Фибровое армирование качественно изменяет свойства бетонных материалов. При насыщении бетонов стальными волокнами формируется новый материал – композит – сталефибробетон, свойства которого зависят от параметров фибрового армирования: типа фибры, её объемного содержания, соотношения между параметрами фибровой арматуры и параметрами структуры бетонной матрицы, уровня дисперсного армирования, соотношения формы и размеров сечения и длины фибры.

Свойства сталефибробетона и конструкций на его основе зависят, кроме того, от технологии производства: технологии приготовления сталефибробетонной смеси (либо без приготовления сталефибробетонной смеси), формования конструкций, условий твердения.

Образцы – кубы (10x10x10 см) после испытаний на раскалывание
из сталефибробетона, изготовленного с листовой фиброй (1), mfv = 1%, из бетона (2), фрезерованной, mfv = 2% (3), токарной (4) и проволочной (5) фиброй.

Разные исследователи при определении физико-механических характеристик сталефибробетона, в зависимости от условий экспериментов, получали различные результаты. Ниже приведены некоторые обобщенные краткие данные.

Прочность

Под прочностью материала понимается тот максимальный уровень напряжений, который может выдержать материал без существенных изменений в своей структуре при ожидаемых условиях работы. Прочностные характеристики сталефибробетона зависят от класса исходного бетона - матрицы, параметров фибрового армирования, характера поверхности фибры, её геометрии и размеров сечения элемента и их соотношения.

Прочность при сжатии. Рост прочности СФБ при сжатии прямо пропорционален классу бетона - матрицы, увеличению содержания фибры, уменьшению относительной длины и практически не зависит от их диаметра. По данным исследований расчетное сопротивление СФБ сжатию – Rfb может превысить призменную прочность исходного бетона – Rb от 40% до 2-х раз. Прочность при сжатии СФБ является контрольной характеристикой при проектировании СФБК и может быть выбрана в соответствии с классом СФБ по прочности на сжатие Bf или определена расчетом.

Прочность при растяжении СФБ растет прямо пропорционально увеличению содержания фибры и их длины, а также при увеличении прочности сцепления фибры с матрицей. Прочность СФБ при растяжении является одной из определяющих характеристик материала. Независимо от длины и объемного содержания фибры прочность СФБ при осевом растяжении ( Rfbt ) иссякает с появлением первой трещины. По данным специалистов Rfbt превышает прочность исходного бетона при растяжении Rbt до 5 – 6 раз. Прочность на растяжение может быть выбрана в соответствии с классом СФБ по прочности на растяжение Bft или определена расчетом.

Прочность на растяжение при изгибе является одним из важных показателей СФБ, который зависит от содержания фибры и её длины, прочности её сцепления с бетонной матрицей, класса бетонной матрицы и превышает прочность исходного бетона в 3,5-5 раз. Как другие характеристики СФБ, прочность СФБ при изгибе может быть выбрана в соответствии с классом СФБ по прочности на растяжение при изгибе Bftb или определена расчетом .

Динамическая прочность СФБ при сжатии (призменная) на 35% выше прочности исходного бетона. Она возрастает с увеличением объемного содержания фибры и уменьшением их относительной длины. Развитие трещин и разрушение в сталефибробетоне наступает медленнее, чем в железобетоне, более чем в 10 раз. Причем вязкость разрушения, характерная для СФБ при воздействии ударной нагрузки, до 40 раз выше аналогичной характеристики бетона.

По литературным данным предел выносливости сталефибробетонных конструкций выше железобетонных на 30% и составляет 0,95 Rbn

Деформативность

Силовые деформации. Показателем деформативности СФБ является модуль деформации – непостоянная величина и существенно зависящая от стадийности работы. Начальный модуль упругости СФБ зависит как от соответствующего показателя исходного бетона, так и от коэффициента фибрового армирования. Значение начального модуля упругости СФБ выше соответствующей характеристики бетона матрицы на 30% … 100%.

Деформативность СФБ характеризуется, помимо указанного выше, предельными деформациями сжатия efc,u и растяжения eft,u. Предельная сжимаемость СФБ efc,u превышает сжимаемость бетона до 3-х раз и составляет в среднем 12 x 10-3 , предельная растяжимость СФБ eft,u существенно выше аналогичной характеристики бетона, по имеющимся данным она составляет 6 … 8 x 10-4.

Деформации ползучести СФБ ниже ползучести исходного бетона при сжатии на
10 … 21%, при растяжении - на 40 … 50%.

Объемные деформации усадки. Можно отметить, что фибра сдерживает деформации усадки бетона в СФБ и способствует их более равномерному протеканию. Снижение деформаций усадки СФБ по отношению к неармированному бетону, по оценкам специалистов, составляет 30 … 60%. При повышенных температурах усадка СФБ ниже усадки исходного бетона на 10 … 23%.

Трещиностойкость

Для СФБ характерна высокая трещиностойкость, которая зависит не только от объемного содержания фибры, но и от дисперсности армирования. Чем более однородна бетонная матрица и, чем выше уровень дисперсности армирования, тем выше, при прочих равных условиях, предел трещиностойкости СФБ, который до 20-ти раз может превышать трещиностойкость исходного бетона.

Долговечность

Долговечность материала определяются такими его свойствами как, морозостойкость, коррозионная стойкость, водонепроницаемость и, косвенно, трещиностойкость. По оценкам специалистов СФБ характеризуется высокими показателями долговечности.

По экспериментальным данным, морозостойкость СФБ при объемном коэффициенты армирования ( mfv ) 0,01 в 7 раз выше по сравнению с исходным бетоном.

Водонепроницаемость СФБ, как другие его гидрофизические свойства, зависит от структуры материала, прямо пропорциональна дисперсности фибрового армирования и содержанию фибры в объеме материала конструкции. По оценкам специалистов, водонепроницаемость СФБ превышает эту характеристику бетона почти в 2 раза.

Коррозионная и фильтрационная стойкость СФБ определяются количеством фибровой арматуры и структурой порового пространства СФБ. Матрица СФБ обладает повышенными защитными свойствами по отношению к волокнам. Экспериментально доказано, что в СФБ образуются капилляры с размером не более 0,01 мм, а это делает его влагонепроницаемым, а значит и обладающим высокой коррозионной стойкостью, превышающей почти в 2 раза коррозионную стойкость исходного бетона.

Теплофизические свойства

Теплофизические свойства СФБ – теплопроводность lf , температуропроводность af , теплоемкость Сf , в общем случае зависят от объемного содержания фибры и влажности материала. Температуропроводность СФБ выше этого показателя исходного бетона до 16%; теплопроводность СФБ lf превышает теплопроводность исходного бетона l0 до 30%, теплоемкость СФБ практически равна теплоемкости бетона.

Огнестойкость. Пожаробезопасность. Огнеупорность

Сталефибробетон является более огнестойким материалом, чем сталь и железобетон, так как при температурах пожара он практически сохраняет на нормативный срок свои прочностные и деформативные свойства. Исследования СФБ, подвергнутого высокотемпературному нагреву при пожаре (до t = 500°С), проведенные с целью оценки его работоспособности, показали, что энергия разрушения СФБ до 200 раз превышает этот показатель обычного бетона, а коэффициент интенсивности напряжений – в 12 раз. При этом СФБ с фибрами из низкоуглеродистой стали выдерживает нагрев, без снижения прочности, до температуры 450 – 537°С; с фибрами из нержавеющей стали до температуры 1590 – 1595°С.

Истираемость

Исследования СФБ на истираемость свидетельствуют о структурном улучшении этого материала в сравнении с неармированным бетоном. Показатель истираемости улучшается, в среднем, в 2 раза сравнении с неармированным бетоном и фибры истираются совместно с бетонной матрицей.

Кавитационная стойкость

Кавитационная стойкость – это специфическое свойство СФБ, которое выделяет его из всех известных материалов. Эта характеристика в 2.5 раза выше, чем у неармированного или армированного другими способами бетона. Особенно она повышается при армировании стальными фибрами полимербетона. Для невысоких скоростей потока достаточной кавитационной стойкостью обладает СФБ и без полимерных добавок.